Archive for the ‘MAKALAH’ Category

DASAR FLUIDA

TUGAS RESUM POMPA DAN KOMPRESOR

Disusun untuk memenuhi tugas Mata Kuliah Pompa Dan Kompresor

pada Jurusan Teknik Mesin Fakultas Teknik

Universitas Sultan Ageng Tirtayasa

Untitled 

Disusun Oleh :

Ahmadi Rafe’i                            3331101530

 

 

 

 

FAKULTAS TEKNIK JURUSAN TEKNIK MESIN

UNIVERSITAS SULTAN AGENG TIRTAYASA

CILEGON – BANTEN

2014

__________________________________________________________________________________________

HUKUM BERNOULLI DAN PENERAPANNYA

  1. Penemu Hukum Bernoulli

Asas Bernoulli dikemukakan pertama kali oleh Daniel Bernoulli (1700±1782). DanielBernoulli lahir di Groningen, Belanda pada tangga l8 Februari 1700 dalam sebuah keluarga yang hebat dalam bidang matematika. Dia dikatakan memiliki hubungan buruk dengan ayahnya yaitu Johann Bernoulli, setelah keduanya bersaing untuk juara pertama dalam kontes ilmiah di Universitas Paris. Johann, tidak mampu menanggung malu harus bersaing dengan anaknya sendiri. Johann Bernoulli juga menjiplak beberapa idekunci dari buku Daniel, Hydrodynamica dalam bukunya yang berjudul Hydraulica yang diterbitkan lebih dahulu dari buku Hydrodynamica. Dalam kertas kerjanya yang berjudul Hydrodynamica, Bernoulli menunjukkan bahwa begitu kecepatan aliran fluida meningkat maka tekanannya justru menurun. Pada saat usia sekolah, ayahnya, Johann Bernoulli, mendorong dia untuk belajar bisnis. Namun, Daniel menolak, karena dia ingin belajar matematika. Ia kemudian menyerah pada keinginan ayahnya dan bisnis dipelajarinya. Ayahnya kemudian memintanya untuk belajar dikedokteran, dan Daniel setuju dengan syarat bahwa ayahnya akan mengajarinya matematika secara pribadi.

B. Prinsip Bernoulli

Prinsip Bernoulli adalah sebuah istilah di dalam mekanika fluida yang menyatakan bahwa pada suatu aliran fluida, peningkatan pada kecepatan fluida akan menimbulkan penurunan tekanan pada aliran tersebut. Prinsip  ini sebenarnya merupakan penyederhanaan dari Persamaan Bernoulli yang menyatakan bahwa jumlah energi pada suatu titik di dalam suatu aliran tertutup sama besarnya dengan jumlah energi di titik lain pada jalur aliran yang sama. Prinsip ini diambil dari nama ilmuwan Belanda/Swiss yang bernama Daniel Bernoulli.
Dalam bentuknya yang sudah disederhanakan, secara umum terdapat dua bentuk persamaan Bernoulli; yang pertama berlaku untuk aliran tak-termampatkan (incompressible flow), dan yang lain adalah untuk fluida termampatkan (compressible flow).

1. Aliran Tak-termampatkan

Aliran tak-termampatkan adalah aliran fluida yang dicirikan dengan tidak berubahnya besaran kerapatan massa (densitas) dari fluida di sepanjang aliran tersebut. Contoh fluida tak-termampatkan adalah: air, berbagai jenis minyak, emulsi, dll. Bentuk Persamaan Bernoulli untuk aliran tak-termampatkan adalah sebagai berikut:

Untitled

di mana:
v = kecepatan fluida
g = percepatan gravitasi bumi
h = ketinggian relatif terhadapa suatu referensi
p = tekanan fluida
ρ = densitas fluida
Persamaan di atas berlaku untuk aliran tak-termampatkan dengan asumsi-asumsi sebagai berikut:
• Aliran bersifat tunak (steady state)
• Tidak terdapat gesekan

2. Aliran Termampatkan

Aliran termampatkan adalah aliran fluida yang dicirikan dengan berubahnya besaran kerapatan massa (densitas) dari fluida di sepanjang aliran tersebut. Contoh fluida termampatkan adalah: udara, gas alam, dll. Persamaan Bernoulli untuk aliran termampatkan adalah sebagai berikut:

Untitled

Hukum Bernoulli menyatakan bahwa jumlah dari tekanan ( p ), energi kinetik per satuan volum (1/2 PV^2 ), dan energi potensial per satuan volume (ρgh) memiliki nilai yang sama pada setiap titik sepanjang suatu garis arus.

Dalam bagian ini kita hanya akan mendiskusikan bagaimana cara berfikir Bernoulli sampai menemukan persamaannya, kemudian menuliskan persamaan ini. Akan tetapi kita tidak akan menurunkan persamaan Bernoulli secara matematis.

Kita disini dapat melihat sebuah pipa yang pada kedua ujungnya berbeda dimanaujung pipa 1 lebih besar dari pada ujung pipa 2.

C. Penerapan Hukum Bernoulli

  1. 1.       Efek Venturi

Selain teorema Torricelli, persamaan Bernoulli juga bisa diterapkan pada kasus khusus lain yakni ketika fluida mengalir dalam bagian pipa yang ketinggiannya hampir sama (perbedaan ketinggian kecil). Untuk memahami penjelasan ini, amati gambar di bawah.

Untitled

Pada gambar di atas tampak bahwa ketinggian pipa, baik bagian pipa yang penampangnya besar maupun bagian pipa yang penampangnya kecil, hampir sama sehingga diangap ketinggian alias h sama. Jika diterapkan pada kasus ini, maka persamaan Bernoulli berubah

menjadi :

Untitled

Ketika fluida melewati bagian pipa yang penampangnya kecil (A2), maka laju fluida bertambah (ingat persamaan kontinuitas). Menurut prinsip Bernoulli, jika kelajuan fluida bertambah, maka tekanan fluida tersebut menjadi kecil. Jadi tekanan fluida di bagian pipa yang sempit lebih kecil tetapi laju aliran fluida lebih besar.

Ini dikenal dengan julukan efek Venturi dan menujukkan secara kuantitatif bahwa jika laju aliran fluida tinggi, maka tekanan fluida menjadi kecil. Demikian pula sebaliknya, jika laju aliran fluida rendah maka tekanan fluida menjadi besar.

2. Tabung Pitot

Tabung Pitot adalah alat ukur yang kita gunakan untuk mengukur kelajuan gas / udara. Perhatikan gambar di bawah.

Lubang pada titik 1 sejajar dengan aliran udara. Posisi kedua lubang ini dibuat cukup jauh dari ujung tabung pitot, sehingga laju dan tekanan udara di luar lubang sama seperti laju dan tekanan udara yang mengalir bebas. Dalam hal ini, v1 = laju aliran udara yang mengalir bebas (ini yang akan kita ukur), dan tekanan pada kaki kiri manometer (pipa bagian kiri) = tekanan udara yang mengalir bebas (P1).

Untitled

Lubang yang menuju ke kaki kanan manometer, tegak lurus dengan aliran udara. Karenanya, laju aliran udara yang lewat di lubang ini (bagian tengah) berkurang dan udara berhenti ketika tiba di titik 2. Dalam hal ini, v2 = 0. Tekanan pada kaki kanan manometer sama dengan tekanan udara di titik 2 (P2).

Ketinggian titik 1 dan titik 2 hampir sama (perbedaannya tidak terlalu besar) sehingga bisa diabaikan. Ingat ya, tabung pitot juga dirancang menggunakan prinsip efek venturi. Mirip seperti si venturi meter, bedanya si tabung petot ini dipakai untuk mengukur laju gas alias udara. Karenanya, kita tetap menggunakan persamaan efek venturi. Sekarang kita oprek persamaannya :

Untitled

Ini persamaan yang kita cari. Persamaan ini digunakan untuk menghitung laju aliran gas alias udara menggunakan si tabung pitot.

3. Penyemprot Racun Serangga

Penyemprot Racun Serangga hampir sama prinsip kerjanya dengan penyemprot parfum. Jika pada penyemprot parfum Anda menekan tombol, maka pada penyemprot racun serangga Anda menekan masuk batang penghisap.

Untitled

Ketika bola karet diremas, udara yang ada di dalam bola karet meluncur keluar melalui pipa 1. Karenanya, udara dalam pipa 1 mempunyai laju yang lebih tinggi. Karena laju udara tinggi, maka tekanan udara pada pipa 1 menjadi rendah. Sebaliknya, udara dalam pipa 2 mempunyai laju yang lebih rendah. Tekanan udara dalam pipa 2 lebih tinggi. Akibatnya, cairan parfum didorong ke atas. Ketika si cairan parfum tiba di pipa 1, udara yang meluncur dari dalam bola karet mendorongnya keluar.

Biasanya lubang berukuran kecil, sehingga parfum meluncur dengan cepat ingat persamaan kontinuitas, kalau luas penampang kecil, maka fluida bergerak lebih cepat. Sebaliknya, kalau luas penampang pipa besar, maka fluida bergerak pelan.

4. Cerbong asap

Pertama, asap hasil pembakaran memiliki suhu tinggi alias panas. Karena suhu tinggi, maka massa jenis udara tersebut kecil. Udara yang massa jenisnya kecil mudah terapung alias bergerak ke atas. Alasannya bukan cuma ini, Prinsip bernoulli juga terlibat dalam persoalan ini. Kedua, prinsip bernoulli mengatakan bahwa jika laju aliran udara tinggi maka tekanannya menjadi kecil, sebaliknya jika laju aliran udara rendah, maka tekanannya besar. Ingat bahwa bagian atas cerobong berada di luar ruangan. Ada angin yang niup di bagian atas cerobong, sehingga tekanan udara di sekitarnya lebih kecil. Di dalam ruangan tertutup tidak ada angin yang niup, sehingga tekanan udara lebih besar. Karenanya asap digiring ke luar lewat cerobong. (udara bergerak dari tempat yang tekanan udaranya tinggi ke tempat yang tekanan udaranya rendah).


5.  Gaya Angkat Sayap Pesawat Terbang

Gaya Angkat Sayap Pesawat Terbang juga merupakan salah satu contoh Hukum Bernoulli.
Pada dasarnya, ada empat buah gaya yang bekerja pada sebuah pesawat terbang yang sedang mengangkasa .

1. Berat Pesawat yang disebabkan oleh gaya gravitasi Bumi

2. Gaya angkat yang dihasilkan oleh kedua sayap pesawat

3. Gaya ke depan yang disebabkan oleh mesin pesawat

4. Gaya hambatan yang disebabkan oleh gerakan udara.

Untitled

Bagian depan sayap dirancang melengkung ke atas. Udara yang ngalir dari bawah berdesak2an dengan temannya yang ada di sebelah atas. Mirip seperti air yang ngalir dari pipa yang penampangnya besar ke pipa yang penampangnya sempit. Akibatnya, laju udara di sebelah atas sayap meningkat. Karena laju udara meningkat, maka tekanan udara menjadi kecil. Sebaliknya, laju aliran udara di sebelah bawah sayap lebih rendah, karena udara tidak berdesak2an (tekanan udaranya lebih besar). Adanya perbedaan tekanan ini, membuat sayap pesawat didorong ke atas. Karena sayapnya nempel dengan badan si pesawat, maka si pesawat ikut2an terangkat.

6.  Tikus juga tahu prinsip Bernoulli

Perhatikan gambar di bawah ini gambar lubang tikus dalam tanah. Tikus juga tahu prinsip  bernoulli. Si tikus tidak mau mati karena sesak napas, karenanya tikus membuat 2 lubang pada ketinggian yang berbeda. Akibat perbedaan ketinggian permukaan tanah, maka udara berdesak-desakan dengan temannya (bagian kanan). Mirip seperti air yang mengalir dari pipa yang penampangnya besar menuju pipa yang penampangnya kecil. Karena berdesak-desakan maka laju udara meningkat (Tekanan udara menurun).

Untitled

Karena ada perbedaan tekanan udara, maka udara dipaksa mengalir masuk melalui lubang tikus. Udara mengalir dari tempat yang tekanan udara-nya tinggi ke tempat yang tekanan udaranya rendah.


__________________________________________________________________________________

HUKUM ARCHIMEDES

Hukum Archimedes adalah sebuah hukum tentang prinsip pengapungan diatas benda cair yang ditemukan oleh seorang ilmuwan yang bernama Archimedes. Beliau adalah seorang matematikawan, astronom, filsuf, fisikawan, dan insinyur berkebangsaan Yunani.

Archimedes juga digolongkan sebagai salah satu ahli matematika kuno dan merupakan yang terbaik dan terbesar di jamannya. Perhitungan dari Archimedes yang akurat tentang lengkungan bola di jadikan konstanta matematika untuk Pi atau π.

A. Bunyi Hukum Archimedes

Archimedes menemukan hukum pada sebuah peristiwa yang disebut dengan Hukum Archimedes yang berbunyi “apabila sebuah benda, sebagian atau seluruhnya terbenam kedalam air, maka benda tersebut akan mendapat gaya tekan yang mengarah keatas yang besarnya sama dengan berat air yang dipindahkan oleh bagian benda yang terbenam tersebut” Misalnya air mempunyai volume tertentu, jika sebuah benda dimasukkan ke dalam air tersebut, maka permukaan air akan terdesak atau naik. Hal ini karena adanya gaya ke atas yang sering disebut gaya Archimedes.

B. Prinsip Archimedes

Ketika kita menimbang batu di dalam air, berat batu yang terukur pada timbangan pegas menjadi lebih kecil dibandingkan dengan ketika kita menimbang batu di udara (tidak di dalam air). Massa batu yang terukur pada timbangan lebih kecil karena ada gaya apung yang menekan batu ke atas. Efek yang sama akan dirasakan ketika kita mengangkat benda apapun dalam air. Batu atau benda apapun akan terasa lebih ringan jika diangkat dalam air. Hal ini bukan berarti bahwa sebagian batu atau benda yang diangkat hilang sehingga berat batu menjadi lebih kecil, tetapi karena adanya gaya apung. Arah gaya apung ke atas, alias searah dengan gaya angkat yang kita berikan pada batu tersebut sehingga batu atau benda apapun yang diangkat di dalam air terasa lebih ringan.

C. Rumus Hukum Archimedes
Gaya apung adalah selisih antara berat benda di udara dengan berat benda dalam zat cair.

Untitled

Mengapung, tenggelam dan melayang

Syarat benda mengapung : Massa jenis benda harus lebih kecil dari massa zat cair

Syarat benda melayang : Massa jenis benda harus sama dengan dari massa zat cair
Syarat benda tenggelam : Massa jenis benda harus lebih besar dari massa zat cair

D. Hukum Turunan Archimedes

Berdasarkan bunyi dan rumus hukum Archimede diatas, suatu benda yang akan terapung, tenggelam atau melayang didalam zat cair tergantung pada gaya berat dan gaya keatas. Maka dari itu, berdasarkan hukum diatas, terciptalah 3 hukum turunan dari hukum Archimedes yang berbunyi:

1. Benda akan terapung jika massa jenis benda yang dimasukan kedalam air lebih kecil dari massa jenis zat cairnya

2. Benda akan melayang jika massa jenis benda yang dimasukan kedalam air sama dengan massa jenis zat cairnya

3. Benda akan tenggelam jika massa jenis benda yang dimasukan kedalam air lebih besar dari pada massa jenis zat cairnya.

E. Penerapan Hukum Archimedes

Penerapan hukum archimedes dalam kehidupan sehari-hari, setelah mengerti dan memahami bunyi hukum Archimedes, banyak ilmuwan yang pada akhirnya terinspirasi oleh hukum tersebut dan diaplikasikan dalam kehidupan sehari-hari. Contoh penerapan dan aplikasi hukum Archimedes dalam kehidupan sehari-hari sangat banyak dan beragam. Bukan hanya yang berhubungan langsung dengan benda cair tapi juga berhubungan dengan udara. Berikut ini contoh penerapan dan aplikasi hukum Archimedes dalam dunia nyata.

1. Teknologi perkapalan seperti Kapal laut dan kapal Selam

Teknologi perkapalan merupakan contoh hasil aplikasi ata penerapan hukum Archimedes yang paling sering kita jumpai dalam kehidupan sehari-hari. Kapan laut terbuat dari besi atau kayu yang di buat berongga dibagian tengahnya. Rongga pada bagian tengah kapal laut ini bertujuan agar volume air laut yang dipindahkan badan kapal besar. Aplikasi ini bedasarkan bunyi hukum Archimedes dimana gaya apung suatu benda sebanding dengan banyaknya air yang dipindahkan. Dengan menggunakan prinsip tersebut maka kapal laut bisa terapung dan tidak tenggelam.

Berbeda dengan kapal selam yang memang di kehendaki untuk bisa tenggelam di air dan juga mengapung di udara. Untuk itu pada bagian tertentu dari kapal selam di persiapkan sebuah rongga yang dapat menampung sejumlah air laut yang bisa di isi dan di buang sesuai kebutuhan. Saat ingin menyelam, rongga tersebut di isi dengan air laut sehingga berat kapal selam bertambah. Sedangkan saat ingin mengapung, air laut dalam rongga tersebut di keluarkan sehingga bobot kapal selam menjadi ringan dan mampu melayang di permukaan.

2. Alat pengukur massa jenis (Hidrometer)

Hidrometer adalah sebuah alat yang digunakan untuk mengukur massa jenis zat cair. Hidrometer merupakan contoh penerapan hukum Archimedesdalam kehidupan sehari-hari yang paling sederhana. Cara kerja hidrometer merupakan realisasi bunyi hukum archimede, dimana suatu benda yang dimasukan kedalam zat cair sebagian atau keseluruhan akan mengalami gaya keatas yang besarnya sama dengan berat zat cair yang dipindahkan.Jika hidrometer dicelupkan ke dalam zat cair, sebagian alat tersebut akan tenggelam. Makin besar massa jenis zat cair, Makin sedikit bagian hidrometer yang tenggelam. Seberapa banyak air yang dipindahkan oleh hidrometer akan tertera pada skala yang terdapat pada alat hidrometer.

3. Jembatan Poton

Jembatan poton adalah sebuah jembatan yang terbuat dari kumpulan drum-drum kosong yang melayang diatas air dan diatur sedemikian rupa sehingga menyerupai sebuah jembatan. Jembatan poton disebut juga jembatan apung. Untuk bisa di jadikan sebagai jembatan, drum-drum tersebut harus berada dalam kondisi kosong dan tertutup rapat sehinggaudara di dalam drum tidak dapat keluar dan air tidak dapat masuk kedalam. Dengan cara itu berat jenis drum dapat diminimalkan sehingga bisa terapung di atas permukaan air.

4. Teknologi Balon Udara

Balon udara adalah penerapan prinsip Archimedes di udara. Jadi ternyata aplikasi hukum Archinedes tidak hanya berlaku untuk benda cair tetapi juga benda gas. Untuk dapat terbang melayang di udara, balon udara harus diisi dengan gas yang bermassa jenis lebih kecil dari massa jenis udaraatmosfer, sehingga, balon udara dapat terbang karena mendapat gaya keatas, misalnya diisi udara yang dipanaskan. Udara yang dipanaskan memiliki tingkat kerenggangan lebih besar daripada udara biasa. Sehingga masa jenis udara tersebut menjadi ringan.

__________________________________________________________________________________________


FLUIDA

  1. DEFINISI FLUIDA

Fluida adalah zat yang dapat mengalir. Kata Fluida mencakup zat car, air dan gas karena kedua zat ini dapat mengalir, sebaliknya batu dan benda-benda keras atau seluruh zat padat tidak digolongkan kedalam fluida karena tidak bisa mengalir.

  Susu, minyak pelumas, dan air merupakan contoh zat cair. dan Semua zat cair itu dapat dikelompokan ke dalam fluida karena sifatnya yang dapat mengalir dari satu tempat ke tempat yang lain. Selain zat cair, zat gas juga termasuk fluida. Zat gas juga dapat mengalir dari satu satu tempat ke tempat lain. Hembusan angin merupakan contoh udara yang berpindah dari satu tempat ke tempat lain.

  Fluida merupakan salah satu aspek yang penting dalam kehidupan sehari-hari. Setiap hari manusia menghirupnya, meminumnya, terapung atau tenggelam di dalamnya. Setiap hari pesawat udara terbang melaluinya dan kapal laut mengapung di atasnya. Demikian juga kapal selam dapat mengapung atau melayang di dalamnya. Air yang diminum dan udara yang dihirup juga bersirkulasi di dalam tubuh manusia setiap saat meskipun sering tidak disadari.

Fluida ini dapat kita bagi menjadi dua bagian yakni:

1.    Fluida statis

2.    Fluida Dinamis

Tapi yang kita bahas dalam makalah ini hanyalah membahas tentang fluida statis ( fluida diam ).

Adapun pengertian dari Fluida Statis adalah fluida yang berada dalam fase tidak bergerak (diam) atau fluida dalam keadaan bergerak tetapi tak ada perbedaan kecepatan antar partikel fluida tersebut atau bisa dikatakan bahwa partikel-partikel fluida tersebut bergerak dengan kecepatan seragam sehingga tidak memiliki gaya geser.

Contoh fenomena fluida statis dapat dibagi menjadi statis sederhana dan tidak sederhana. Contoh fluida yang diam secara sederhana adalah air di bak yang tidak dikenai gaya oleh gaya apapun, seperti gaya angin, panas, dan lain-lain yang mengakibatkan air tersebut bergerak. Contoh fluida statis yang tidak sederhana adalah air sungai yang memiliki kecepatan seragam pada tiap partikel di berbagai lapisan dari permukaan sampai dasar sungai.

Cairan yang berada dalam bejana mengalami gaya-gaya yang seimbang sehingga cairan itu tidak mengalir. Gaya dari sebelah kiri diimbangi dengan gaya dari sebelah kanan, gaya dari atas ditahan dari bawah. Cairan yang massanya M menekan dasar bejana dengan gaya sebesar Mg. Gaya ini tersebar merata pada seluruh permukaan dasar bejana. Selama cairan itu tidak mengalir (dalam keadaan statis), pada cairan tidak ada gaya geseran sehingga hanya melakukan gaya ke bawah oleh akibat berat cairan dalam kolom tersebut.

  1. SIFAT FISIS FLUIDA

Sifat fisis fluida dapat ditentukan dan dipahami lebih jelas saat fluida berada dalam keadaan diam (statis). Sifat-sifat fisis fluida statis ini di antaranya, massa jenis, tegangan permukaan, kapilaritas, dan viskositas.

1.    Massa Jenis

       Pernahkah Anda membandingkan berat antara kayu dan besi? Benarkah pernyataan bahwa besi lebih berat daripada kayu? Pernyataan tersebut tentunya kurang tepat, karena segelondong kayu yang besar jauh lebih berat daripada sebuah bola besi. Pernyataan yang tepat untuk perbandingan antara kayu dan besi tersebut, yaitu besi lebih padat daripada kayu. Anda tentu masih ingat, bahwa setiap benda memiliki kerapatan massa yang berbeda-beda serta merupakan sifat alami dari benda tersebut. Dalam Fisika, ukuran kepadatan (densitas) benda homogen disebut massa jenis, yaitu massa per satuan volume. Jadi massa jenis adalah pengukuran massa setiap satuan volume benda. Semakin tinggi massa jenis suatu benda, maka semakin besar pula massa setiap volumenya. Massa jenis rata-rata setiap benda merupakan total massa dibagi dengan total volumenya. Sebuah benda yang memiliki massa jenis lebih tinggi (misalnya besi) akan memiliki volume yang lebih rendah daripada benda bermassa sama yang memiliki massa jenis lebih rendah (misalnya air).

Satuan SI massa jenis adalah kilogram per meter kubik (kg·m-3)

Massa jenis berfungsi untuk menentukan zat. Setiap zat memiliki massa jenis yang berbeda. Dan satu zat berapapun massanya berapapun volumenya akan memiliki massa jenis yang sama.

Secara matematis, massa jenis dituliskan sebagai berikut.

  dengan:         = massa (kg atau g),

        V = volume (m3 atau cm3), dan

                        ρ = massa jenis (kg/m3 atau g/cm3).

Jenis beberapa bahan dan massa jenisnya dapat dilihat pada Tabel berikut.

Tabel Massa Jenis atau Kerapatan Massa (Density)

Bahan Massa Jenis (g/cm3) Nama Bahan Massa Jenis (g/cm3)
Air 1,00 Gliserin 1,26
Aluminium 2,7 Kuningan 8,6
Baja 7,8 Perak 10,5
Benzena 0,9 Platina 21,4
Besi 7,8 Raksa 13,6
Emas 19,3 Tembaga 8,9
Es 0,92 Timah Hitam 11,3
Etil Alkohol 0,81 Udara 0,0012

2.      Tegangan permukaan

          Pernahkah kamu melihat sebuah jarum atau silet terapung diatas air? Atau kamu pasti pernah melihat ada nyamuk atau serangga lain dapat berdiri diatas air. Fenomena ini erat kaitannya dengan penjelasan tentang tegangan permukaan.

          Mari kita amati sebatang jarum atau sebuah silet yang kita buat terapung di permukaan air sebagai benda yang mengalami tegangan permukaan. Tegangan permukaan disebabkan oleh interaksi molekul-molekul zat cair dipermukaan zat cair. Di bagian dalam cairan sebuah molekul dikelilingi oleh molekul lain disekitarnya, tetapi di permukaan cairan tidak ada molekul lain dibagian atas molekul cairan itu. Hal ini menyebabkan timbulnya gaya pemulih yang menarik molekul apabila molekul itu dinaikan menjauhi permukaan, oleh molekul yang ada di bagian bawah permukaan cairan.

Sebaliknya jika molekul di permukaan cairan ditekan, dalam hal ini diberi jarum atau silet, molekul bagian bawah permukaan akan memberikan gaya pemulih yang arahnya ke atas, sehingga gaya pemulih ke atas ini dapat menopang jarum atau silet tetap di permukaan air tanpa tenggelam.

       Gaya ke atas untuk menopang jarum atau silet agar tidak tenggelam merupakan perkalian koefisien tegangan permukaan dengan dua kali panjang jarum. Panjang jarum disini adalah permukaan yang bersentuhan dengan zat cair.

          Jadi dapat kita simpulkan bahwa pengertian dari tegangan permukaan adalah kecenderungan permukaan zat cair untuk menegang, sehingga permukaannya seperti ditutupi oleh suatu lapisan elastis.

3.    Kapilaritas

          Tegangan permukaan ternyata juga mempunyai peranan pada fenomena menarik, yaitu kapilaritas. Contoh peristiwa yang menunjukkan kapilaritas adalah minyak tanah, yang dapat naik melalui sumbu kompor. Selain itu, dinding rumah kita pada musim hujan dapat basah juga terjadi karena adanya gejala kapilaritas.

          Untuk membahas kapilaritas, kita perhatikan sebuah pipa kaca dengan diameter kecil (pipa kapiler) yang ujungnya terbuka saat dimasukkan ke dalam bejana berisi air. Kita dapat menyaksikan bahwa permukaan air dalam pipa akan naik. Lain hasilnya jika kita mencelupkan pipa tersebut ke dalam bejana berisi air raksa. Permukaan air raksa dalam tabung akan turun atau lebih rendah daripada permukaan air raksa dalam bejana. Gejala inilah yang disebut dengan gejala kapilaritas.

         Pada kejadian ini, pipa yang digunakan adalah pipa kapiler. Oleh karena itu, gejala kapilaritas adalah gejala naik turunnya zat cair dalam pipa kapiler. Permukaan zat cair yang berbentuk cekung atau cembung disebut meniskus. Permukaan air pada dinding kaca yang berbentuk cekung disebut meniskus cekung, sedangkan permukaan air raksa yang berbentuk cembung disebut meniskus cembung.

          Penyebab dari gejala kapiler adalah adanya adhesi dan kohesi. Kohesi adalah gaya tarik menarik antar molekul yang sama jenisnya. Gaya ini menyebabkan antara zat yang satu dengan yang lain tidak dapat menempel karena molekulnya saling tolak menolak.
sedangkan adhesi adalah gaya tarik menarik antar molekul yang berbeda jenisnya. Gaya ini menyebabkan antara zat yang satu dengan yang lain dapat menempel dengan baik karena molekulnya saling tarik menarik atau merekat.

          Pada gejala kapilaritas pada air, air dalam pipa kapiler naik karena adhesi antara partikel air dengan kaca lebih besar daripada kohesi antar partikel airnya. Sebaliknya, pada gejala kapilaritas air raksa, adhesi air raksa dengan kaca lebih kecil daripada kohesi antar partikel air raksa. Oleh karena itu, sudut kontak antara air raksa dengan dinding kaca akan lebih besar daripada sudut kontak air dengan dinding kaca.

          Kenaikan atau penurunan zat cair pada pipa kapiler disebabkan oleh adanya tegangan permukaan yang bekerja pada keliling persentuhan zat cair dengan pipa.

          Berikut ini beberapa contoh yang menunjukkan gejala kapilaritas dalam kehidupan sehari-hari:

a. Naiknya minyak tanah melalui sumbu kompor sehingga kompor bisa dinyalakan.

b. Kain dan kertas isap dapat menghisap cairan.

c. Air dari akar dapat naik pada batang pohon melalui pembuluh kayu.

          Selain keuntungan, kapilaritas dapat menimbulkan beberapa masalah berikut ini :

Air hujan merembes dari dinding luar, sehingga dinding dalam juga basah.

Air dari dinding bawah rumah merembes naik melalui batu bata menuju ke atas  sehingga dinding rumah lembab.

 

4.    Viskositas

          Viskositas merupakan pengukuran dari ketahanan fluida yang diubah baik dengan tekanan maupun tegangan. Pada masalah sehari-hari (dan hanya untuk fluida), viskositas adalah “Ketebalan” atau “pergesekan internal”. Oleh karena itu, air yang “tipis”, memiliki viskositas lebih rendah, sedangkan maduyang “tebal”, memiliki viskositas yang lebih tinggi. Sederhananya, semakin rendah viskositas suatu fluida, semakin besar juga pergerakan dari fluida tersebut. Viskositas menjelaskan ketahanan internal fluida untuk mengalir dan mungkin dapat dipikirkan sebagai pengukuran dari pergeseran fluida.

          Seluruh fluida (kecuali superfluida) memiliki ketahanan dari tekanan dan oleh karena itu disebut kental, tetapi fluida yang tidak memiliki ketahanan tekanan dan tegangan disebut fluide ideal.

__________________________________________________________________________________

 

TEKANAN HIDROSTATIS

Masih ingatkah Anda definisi tekanan? Tekanan adalah gaya yang bekerja tegak lurus pada suatu permukaan bidang dan dibagi luas permukaan bidang tersebut. Secara matematis, persamaan tekanan dituliskan sebagai berikut.

p= F/ A ……….. (1)

dengan:              = gaya (N),

= luas permukaan (m2), dan

= tekanan (N/m2 = Pascal).

Persamaan diatas menyatakan bahwa tekanan berbanding terbalik dengan luas permukaan bidang tempat gaya bekerja. Jadi, untuk besar gaya yang sama, luas bidang yang kecil akan mendapatkan tekanan yang lebih besar daripada luas bidang yang besar. Dapatkah Anda memberikan beberapa contoh penerapan konsep tekanan dalam kehidupan sehari-hari?

Tekanan Hidrostatis adalah tekanan yang terjadi di bawah air. Tekanan hidrostatis disebabkan oleh fluida tak bergerak. Tekanan hidrostatis yang dialami oleh suatu titik di dalam fluida diakibatkan oleh gaya berat fluida yang berada di atas titik tersebut. Jika besarnya tekanan hidrostatis pada dasar tabung adalah p, menurut konsep tekanan, besarnya dapat dihitung dari perbandingan antara gaya berat fluida (F) dan luas permukaan bejana (A).

p= F/A …………(2)

Gaya berat fluida merupakan perkalian antara massa fluida dengan percepatan gravitasi Bumi, ditulis

p= massa x gravitasi bumi / A

Oleh karena = ρ V, persamaan tekanan oleh fluida dituliskan sebagai

p =  ρVg / A……………..(3)

Volume fluida di dalam bejana merupakan hasil perkalian antara luas permukaan bejana (A) dan tinggi fluida dalam bejana (h). Oleh karena itu, persamaan tekanan di dasar bejana akibat fluida setinggi dapat dituliskan menjadi

p=  ρ(Ah) g / A = ρ h g…………(4)

Jika tekanan hidrostatis dilambangkan dengan ph, persamaannya dituliskan sebagai berikut.

ph = ρ gh

………..(5)

 dengan:          ph = tekanan hidrostatis (N/m2),

ρ = massa jenis fluida (kg/m3),

= percepatan gravitasi (m/s2), dan

= kedalaman titik dari permukaan fluida (m).

Semakin tinggi dari permukaan Bumi, tekanan udara akan semakin berkurang. Sebaliknya, semakin dalam Anda menyelam dari permukaan laut atau danau, tekanan hidrostatis akan semakin bertambah. Mengapa demikian? Hal tersebut disebabkan oleh gaya berat yang dihasilkan oleh udara dan zat cair. Anda telah mengetahui bahwa lapisan udara akan semakin tipis seiring bertambahnya ketinggian dari permukaan Bumi sehingga tekanan udara akan berkurang jika ketinggian bertambah. Adapun untuk zat cair, massanya akan semakin besar seiring dengan bertambahnya kedalaman. Oleh karena itu, tekanan hidrostatis akan bertambah jika kedalaman bertambah.

Prinsip tekanan hidrostatis ini digunakan pada alat-alat pengukur tekanan. Alat-alat pengukur tekanan yang digunakan untuk mengukur tekanan gas, di antaranya sebagai berikut.

a. Manometer Pipa Terbuka

Manometer  pipa terbuka adalah alat pengukur tekanan gas yang paling sederhana. Alat ini berupa pipa berbentuk U yang berisi zat cair. Ujung yang satu mendapat tekanan sebesar (dari gas yang hendak diukur tekanannya) dan ujung lainnya berhubungan dengan tekanan atmosfir (p0).

b. Barometer

Barometer raksa ini ditemukan pada 1643 oleh Evangelista Torricelli, seorang ahli Fisika dan Matematika dari Italia. Barometer adalah alat untuk mengukur tekanan udara. Barometer umum digunakan dalam peramalan cuaca, dimana tekanan udara yang tinggi menandakan cuaca bersahabat, sedangkan tekanan udara rendah menandakan kemungkinan badai. Ia mendefinisikan tekanan atmosfir dalam bukunya yang berjudul “A Unit of MeasurementThe Torr” Tekanan atmosfer (1 atm) sama dengan tekanan hidrostatis raksa (mercury) yang tingginya 760 mm. Cara mengonversikan satuannya adalah sebagai berikut.

ρ raksa × percepatan gravitasi Bumi × panjang raksa dalam tabung atau

(13.600 kg/cm3 )(9,8 m/s2)(0,76 m) = 1,103 × 105 N/m2

               Jadi, 1 atm = 76 cmHg = 1,013 × 105 N/m2

c. Pengukur Tekanan Ban

Alat ini digunakan untuk mengukur tekanan udara di dalam ban. Bentuknya berupa silinder panjang yang di dalamnya terdapat pegas. Saat ujungnya ditekankan pada pentil ban, tekanan udara dari dalam ban akan masuk ke dalam silinder dan menekan pegas. Besarnya tekanan yang diterima oleh pegas akan diteruskan ke ujung lain dari silinder yang dihubungkan dengan skala. Skala ini telah dikalibrasi sehingga dapat menunjukkan nilai selisih tekanan udara luar (atmosfer) dengan tekanan udara dalam ban.

_________________________________________________________________________________________

KARAKTERISTIK GAS IDEAL

Gas merupakan satu dari tiga wujud zat dan walaupun wujud ini merupakan bagian tak terpisahkan dari studi kimia, bab ini terutama hanya akan membahasa hubungan antara volume, temperatur dan tekanan baik dalam gas ideal maupun dalam gas nyata, dan teori kinetik molekular gas, dan tidak secara langsung kimia. Bahasan utamanya terutama tentang perubahan fisika, dan reaksi kimianya tidak didisuksikan. Namun, sifat fisik gas bergantung pada struktur molekul gasnya dan sifat kimia gas juga bergantung pada strukturnya. Perilaku gas yang ada sebagai molekul tunggal adalah contoh yang baik kebergantungan sifat makroskopik pada struktur mikroskopik.

a. Sifat gas

Sifat-sifat gas dapat dirangkumkan sebagai berikut.

  1. Gas bersifat transparan.
  2. Gas terdistribusi merata dalam ruang apapun bentuk ruangnya.
  3. Gas dalam ruang akan memberikan tekanan ke dinding.
  4. Volume sejumlah gas sama dengan volume wadahnya. Bila gas tidak diwadahi, volume gas akan menjadi tak hingga besarnya, dan tekanannya akan menjadi tak hingga kecilnya.
  5. Gas berdifusi ke segala arah tidak peduli ada atau tidak tekanan luar.
  6. Bila dua atau lebih gas bercampur, gas-gas itu akan terdistribusi merata.
  7. Gas dapat ditekan dengan tekanan luar. Bila tekanan luar dikurangi, gas akan mengembang.
  8. Bila dipanaskan gas akan mengembang, bila didinginkan akan mengkerut.

Dari berbagai sifat di atas, yang paling penting adalah tekanan gas. Misalkan suatu cairan memenuhi wadah. Bila cairan didinginkan dan volumenya berkurang, cairan itu tidak akan memenuhi wadah lagi. Namun, gas selalu akan memenuhi ruang tidak peduli berapapun suhunya. Yang akan berubah adalah tekanannya.

Alat yang digunakan untuk mengukur tekanan gas adalah manometer. Prototipe alat pengukur tekanan atmosfer, barometer, diciptakan oleh Torricelli.

Tekanan didefinisikan gaya per satuan luas, jadi tekanan = gaya/luas.

Dalam SI, satuan gaya adalah Newton (N), satuan luas m2, dan satuan tekanan adalah Pascal (Pa). 1 atm kira-kira sama dengan tekanan 1013 hPa.

1 atm = 1,01325 x 105 Pa = 1013,25 hPa

Namun, dalam satuan non-SI unit, Torr, kira-kira 1/760 dari 1 atm, sering digunakan untuk mengukur perubahan tekanan dalam reaksi kimia.

b. Volume dan tekanan

Fakta bahwa volume gas berubah bila tekanannya berubah telah diamati sejak abad 17 oleh Torricelli dan filsuf /saintis Perancis Blase Pascal (1623-1662). Boyle mengamati bahwa dengan mengenakan tekanan dengan sejumlah volume tertentu merkuri, volume gas, yang terjebak dalam tabung delas yang tertutup di salah satu ujungnya, akan berkurang. Dalam percobaan ini, volume gas diukur pada tekanan lebih besar dari 1 atm.

Boyle membuat pompa vakum menggunakan teknik tercangih yang ada waktu itu, dan ia mengamati bahwa gas pada tekanan di bawah 1 atm akan mengembang. Setelah ia melakukan banyak percobaan, Boyle mengusulkan persamaan (1) untuk menggambarkan hubungan antara volume V dan tekanan P gas. Hubungan ini disebut dengan hukum Boyle.

PV = k (suatu tetapan) (1)

Penampilan grafis dari percobaan Boyle dapat dilakukan dengan dua cara. Bila P diplot sebagai ordinat dan V sebagai absis, didapatkan hiperbola (Gambar 6.1(a)). Kedua bila V diplot terhadap 1/P, akan didapatkan garis lurus (Gambar 6.1(b)).

Gambar 6.1 hubungan tekana dan volume

(a) Plot hasil percobaan; tekanan vs. volume

(b) Plot hasil percobaan; volume vs 1/tekanan. Catat bahwa kemiringan k tetap.

Volume dan temperatur

Setelah lebih dari satu abad penemuan Boyle ilmuwan mulai tertarik pada hubungan antara volume dan temperatur gas. Mungkin karena balon termal menjadi topik pembicaraan di kotakota waktu itu. Kimiawan Perancis Jacques Alexandre César Charles (1746-1823), seorang navigator balon yang terkenal pada waktu itu, mengenali bahwa, pada tekanan tetap, volume gas akan meningkat bila temperaturnya dinaikkan. Hubungan ini disebut dengan hukum Charles, walaupun datanya sebenarnya tidak kuantitatif. Gay-Lussac lah yang kemudian memplotkan volume gas terhadap temperatur dan mendapatkan garis lurus (Gambar 6.2). Karena alasan ini hukum Charles sering dinamakan hukum Gay-Lussac. Baik hukum Charles dan hukum Gay-Lussac kira-kira diikuti oleh semua gas selama tidak terjadi pengembunan.

Pembahasan menarik dapat dilakukan dengan hukum Charles. Dengan mengekstrapolasikan plot volume gas terhadap temperatur, volumes menjadi nol pada temperatur tertentu. Menarik bahwa temperatur saat volumenya menjadi nol sekiatar -273°C (nilai tepatnya adalah -273.2 °C) untuk semua gas. Ini mengindikasikan bahwa pada tekanan tetap, dua garis lurus yang didapatkan dari pengeplotan volume V1 dan V2 dua gas 1 dan 2 terhadap temperatur akan berpotongan di V = 0.

Fisikawan Inggris Lord Kelvin (William Thomson (1824-1907)) megusulkan pada temperatur ini temperatur molekul gas menjadi setara dengan molekul tanpa gerakan dan dengan demikian volumenya menjadi dapat diabaikan dibandingkan dengan volumenya pada temperatur kamar, dan ia mengusulkan skala temperatur baru, skala temperatur Kelvin, yang didefinisikan dengan persamaan berikut.

273,2 + °C = K (2)

Kini temperatur Kelvin K disebut dengan temperatur absolut, dan 0 K disebut dengan titik nol absolut. Dengan menggunakan skala temperatur absolut, hukum Charles dapat diungkapkan dengan persamaan sederhana

V = bT (K) (3)

dengan b adalah konstanta yang tidak bergantung jenis gas.

Menurut Kelvin, temperatur adalah ukuran gerakan molekular. Dari sudut pandang ini, nol absolut khususnya menarik karena pada temperatur ini, gerakan molekular gas akan berhenti. Nol absolut tidak pernah dicapai dengan percobaan. Temperatur terendah yang pernah dicapai adalah sekitar 0,000001 K.

Avogadro menyatakan bahwa gas-gas bervolume sama, pada temperatur dan tekanan yang sama, akan mengandung jumlah molekul yang sama (hukum Avogadro; Bab 1.2(b)). Hal ini sama dengan menyatakan bahwa volume real gas apapun sangat kecil dibandingkan dengan volume yang ditempatinya. Bila anggapan ini benar, volume gas sebanding dengan jumlah molekul gas dalam ruang tersebut. Jadi, massa relatif, yakni massa molekul atau massa atom gas, dengan mudah didapat.

d. Persamaan gas ideal

Esensi ketiga hukum gas di atas dirangkumkan di bawah ini. Menurut tiga hukum ini, hubungan antara temperatur T, tekanan P dan volume V sejumlah n mol gas dengan terlihat.

Tiga hukum Gas

Hukum Boyle: V = a/P (pada T, n tetap)

Hukum Charles: V = b.T (pada P, n tetap)

Hukum Avogadro: V = c.n (pada T, P tetap)

Jadi, V sebanding dengan T dan n, dan berbanding terbalik pada P. Hubungan ini dapat digabungkan menjadi satu persamaan:

V = RTn/P (4)

atau

PV = nRT (5)

R adalah tetapan baru. Persamaan di atas disebut dengan persamaan keadaan gas ideal atau lebih sederhana persamaan gas ideal.

Nilai R bila n = 1 disebut dengan konstanta gas, yang merupakan satu dari konstanta fundamental fisika. Nilai R beragam bergantung pada satuan yang digunakan. Dalam sistem metrik, R = 8,2056 x10–2 dm3 atm mol-1 K-1. Kini, nilai R = 8,3145 J mol-1 K-1 lebih sering digunakan.

e. Hukum tekanan parsial

Dalam banyak kasus Anda tidak akan berhadapan dengan gas murni tetapi dengan campuran gas yang mengandung dua atau lebih gas. Dalton tertarik dengan masalah kelembaban dan dengan demikian tertarik pada udara basah, yakni campuran udara dengan uap air. Ia menurunkan hubungan berikut dengan menganggap masing-masing gas dalam campuran berperilaku independen satu sama lain.

Anggap satu campuran dua jenis gas A (nA mol) dan B (nB mol) memiliki volume V pada temperatur T. Persamaan berikut dapat diberikan untuk masing-masing gas.

pA = nART/V (6)

pB = nBRT/V (7)

pA dan pB disebut dengan tekanan parsial gas A dan gas B. Tekanan parsial adalah tekanan yang akan diberikan oleh gas tertentu dalam campuran seandainya gas tersebut sepenuhnya mengisi wadah.

Dalton meyatakan hukum tekanan parsial yang menyatakan tekanan total P gas sama dengan jumlah tekanan parsial kedua gas. Jadi,

P = pA + pB = (nA + nB)RT/V (8)

Hukum ini mengindikasikan bahwa dalam campuran gas masing-masing komponen memberikan tekanan yang independen satu sama lain. Walaupun ada beberapa gas dalam wadah yang sama, tekanan yang diberikan masing-masing tidak dipengaruhi oleh kehadiran gas lain.

Bila fraksi molar gas A, xA, dalam campuran xA = nA/(nA + nB), maka pA dapat juga dinyatakan dengan xA.

pA = [nA/(nA + nB)]P (9)

Dengan kata lain, tekanan parsial setiap komponen gas adalah hasil kali fraksi mol, xA, dan tekanan total P.

Tekanan uap jenuh (atau dengan singkat disebut tekanan jenuh) air disefinisikan sebagai tekanan parsial maksimum yang dapat diberikan oleh uap air pada temperatur tertentu dalam campuran air dan uap air. Bila terdapat lebih banyak uap air, semua air tidak dapat bertahan di uap dan sebagian akan mengembun.

JENIS PELUMAS

Posted: November 24, 2012 in MAKALAH

Pelumas adalah zat kimia, yang umumnya cairan, yang diberikan di antara dua benda bergerak untuk mengurangi gaya gesek. Zat ini merupakan fraksi hasil destilasi minyak bumi yang memiliki suhu 105-135 derajat celcius. Pelumas berfungsi sebagai lapisan pelindung yang memisahkan dua permukaan yang berhubungan. Umumnya pelumas terdiri dari 90% minyak dasar dan 10% zat tambahan. Salah satu penggunaan pelumas paling utama adalah oli mesin yang dipakai pada mesin pembakaran dalam.

 

A. Fungsi dan tujuan pelumasan

Pada berbagai jenis mesin dan peralatan yang sedang bergerak, akan terjadi peristiwa pergesekan antara logam. Oleh karena itu akan terjadi peristiwa pelepasan partikel partikel dari pergesekan tersebut. Keadaan dimana logam melepaskan partikel disebut aus atau keausan. Untuk mencegah atau mengurangi keausan yang lebih parah yaitu memperlancar kerja mesin dan memperpanjang usia dari mesin dan peralatan itu sendiri, maka bagian bagian logam dan peralatan yang mengalami gesekan tersebut diberi perlindungan ekstra.

1. Tugas pokok pelumas

Pada dasarnya yang menjadi tugas pokok pelumas adalah mencegah atau mengurangi keausan sebagai akibat dari kontak langsung antara permukaan logam yang satu dengan permukaan logam lain terus menerus bergerak. Selain keausan dapat dikurangi, permukaan logam yang terlumasi akan mengurangi besar tenaga yang diperlukan akibat terserap gesekan, dan panas yang ditimbulkan oleh gesekan akan berkurang.

2. Tugas tambahan pelumas

Selain mempunyai tugas pokok, pelumas juga berfungsi sebagai penghantar panas. Pada mesin mesin dengan kecepatan putaran tinggi, panas akan timbul pada bantalan bantalan sebagai akibat dari adanya gesekan yang banyak. Dalam hal ini pelumas berfungsi sebagai penghantar panas dari bantalan untuk mencegah peningkatan temperatur atau suhu mesin.

Suhu yang tinggi akan merusak daya lumas. Apabila daya lumas berkurang, maka maka gesekan akan bertambah dan selanjutnya panas yang timbul akan semakin banyak sehingga suhu terus bertambah. Akibatnya pada bantalan bantalan tersebut akan terjadi kemacetan yang secara otomatis mesin akan berhenti secara mendadak. Oleh karena itu, mesin mesin dengan kecepatan tinggi digunakan pelumas yang titik cairnya tinggi, sehingga walaupun pada suhu yang tinggi pelumas tersebut tetap stabil dan dapat melakukan pelumasan dengan baik.

B. Jenis jenis pelumas

Terdapat berbagai jenis minyak pelumas. Jenis jenis minyak pelumas dapat dibedakan penggolongannya berdasarkan bahan dasar (base oil), bentuk fisik, dan tujuan penggunaan.

 

1. Dilihat dari bentuk fisiknya :

a. Minyak pelumas

b. Gemuk pelumas

c. Cairan pelumas

 

2. Dilihat dari bahan dasarnya :

a. Pelumas dari bahan nabati

b. Pelumas dari bahan hewani

c. Pelumas sintetis

 

3. Dilihat dari penggunaannya :

a. Pelumas kendaraan

b. Pelumas industri

c. Pelumas perkapalan

d. Pelumas penerbangan

 

4. Dilihat dari pengaturannya :

i. Pelumas kendaraan bermotor :

1. Minyak pelumas motor kendaraan baik motor bensin / Diesel 2. Minyak pelumas untuk transmisi 3. Automatic transmission fluid & hydraulic fluid

 

ii. Pelumas motor diesel untuk industri :

1. Motor diesel berputar cepat 2. Motor diesel berputar sedang 3. Motor diesel berputar lambat

 

iii. Pelumas untuk motor mesin 2 langkah :

1. Untuk kendaraan bermotor 2. Untuk perahu motor 3. Lain lain ( gergaji mesin, mesin pemotong rumput )

 

iv. Pelumas khusus

Jenis pelumas ini banyak ragamnya yang penggunaannya sangat spesifik untuk setiap jenis, di antaranya adalah untuk senjata api, mesin mobil balap, peredam kejut, pelumas rem, pelumas anti karat, dan lain-lain.

 

C. Penggunaan pelumas

Untuk memperoleh hasil yang maksimal atau memuaskan di dalam sistem pelumasan ini maka mutlak diperlukan adanya selektifitas penggunaan pelumas itu sendiri, yaitu menentukan jenis pelumas yang tepat untuk mesin dan peralatan yang akan dilumasi. Hal ini untuk mencegah salah pilih dari pelumas yang akan dipakai yang dapat berakibat fatal.

1. Hal hal yang perlu diperhatikan :

a. Rekomendasi pabrik pembuat mesin

Biasanya pabrik pembuat mesin seperti pabrik kendaraan bermotor dan pabrik mesin mesin industri memberi petunjuk jenis pelumas yang direkomendasikan untuk digunakan. Petunjuk ini sangat terperinci sedemikian rupa bagi pelumasan masing masing bagian dalam jangka waktu tertentu.

b. Bahan bakar yang digunakan

Dalam hal ini yang perlu diperhatikan adalah bahwa pelumasan untuk mesin dengan bahan bakar bensin berbeda dengan pelumasan untuk mesin berbahan bakar solar atau gas.Apabila tidak ada ketentuan ukuran atau aturan penggunaan pelumas oleh pembuat mesin, maka anjuran dalam penggunaan pelumas biasanya dilaksanakan oleh para teknisi pabrik dengan melihat pada :

- Data teknis dari mesin – Pengetahuan tentang pelumasan dari para teknisi – Pengalaman dari para teknisi

c. Perkembangan teknis pelumas

Hasil kemajuan yang dicapai di bidang pelumas ini, pada dasarnya adalah hasil kerjasama antara pabrik pembuat mesin, pembuat pelumas, dan pembuat bahan bahan tambahan ( additif ). Walaupun terdapat beragam pelumas berkualitas tinggi, namun pada intinya yang menentukan mutu dan daya guna suatu pelumas terdiri dari 3 faktor :

1. Bahan dasar ( based oil ). 2. Teknik dan pengolahan bahan dasar dalam pembuatan pelumas. 3. Bahan bahan additif yang digunakan atau dicampurkan kedalam bahan dasar untuk mengembangkan sifat tertentu guna tujuan tertentu.

Sebenarnya base oil mempunyai segala kemampuan dasar yang dibutuhkan dalam pelumasan. Tanpa aditifpun, sebenarnya minyak dasar sudah mampu menjalankan tugas-tugas pelumasan. Namun unjuk kerjanya belum begitu sempurna dan tidak dapat digunakan dalam waktu lama.

 

ISTILAH-ISTILAH PADA MINYAK PELUMAS

Istilah-istilah teknis tentang minyak pelumas sering dianggap remeh, padahal dengan mengatahui istilah-istilah yang ada pada pelumas, maka kita akan tahu persis baik tidaknya atau tepat tidaknya penggunaan suatu pelumas :

1. Viscosity; adalah kekentalan suatu minyak pelumas yang merupakan ukuran kecepatan bergerak atau daya tolak suatu pelumas untuk mengalir. Pada temperatur normal, pelumas dengan viscosity rendah akan cepat mengalir dibandingkan pelumas dengan viscosity tinggi. Biasanya untuk kondisi operasi yang ringan, pelumas dengan viscosity rendah yang diajurkan untuk digunakan, sedangkan pada kondisi operasi tinggi dianjurkan menggunakan pelumas dengan viscosity tinggi

2. Viscosity Index (Indeks viskositas); merupakan kecepatan perubahan kekentalan suatu pelumas ddikarenakan adanay perubahan temperatur. Makin tinggi VI suatu pelumas, maka akan semakin kecil terjadinya perubahan kekentalan minyak pelumas meskinpun terjadi perubahan temperatur. Pelumas biasa dapat memiliki VI sekitar 100, sedang yang premium dapat mencapai 130, untuk sithetis dapat mencapai 250.

3. Flash point; titik nyala suatu pelumas adalah menunjukkan temperatur kerja suatu pelumas dimana pada kondisi temperatur tsb akan dikeluarkan uap air yang cukup untuk membentuk campuran yang mudah terbakar dengan udara.

4. Fire point; adalah menunjukkan pada titik temperatur dimana pelumas akan dan terus menyala sekurang-kurangnya selama 5 detik.

5. Pour point; merupakan titik tempratur dimana suatu pelumas akan berhenti engalir dengan leluasa.

6. Cloud point; keadaan dimana pada temperatur tertentu maka lilin yang larut di dalam minyak pelumas akan mulai membeku..

7. Aniline point; merupakan pentunjuk bahwa minyak pelumas tertentu sesuai sifat-sifatnya dengan sifat-sifat karet yang digunakan sebagai seal dan slang. Hal ini ditetapkan sebagai temperatur dimana volume yang sama atau seimbang dari minyak pelumas adan aniline dapat dicampur

8. Neutralisation Number or Acidity; merupakan ukuran dari alkali yang diperlukan untuk menetralisir suatu minyak Makin tinggi angka netralissasi maka akan semakin banyak asam yang ada. Minyak yang masih baru tidak mengandung asam bebas dan acidity numbernya dapat kurang atau sama dengan 0,1. Sedangkan pelumas bekas, akan mengandung acidity number yang lebih tinggi.

9. Ash; Apabila pelumas habis terbakar maka akan terbentuk abu (ash) atau abu sulfat. Hal ini berhubungan dengan pengukuran kemurnian suatu pelumas.

FUNGSI PELUMASAN

Posted: November 24, 2012 in MAKALAH

Fungsi utama pelumas dalam melayani mesin meliputi hal berikut :

 

1. Mengendalikan Gesekan

Gesekan pada komponen-komponen yang bekerja pada sistem pelumasan akan menimbulkan panas, sehingga dapat memicu timbulnya keausan yang berlebih. Seperti diketahui, pelumas dapat bekerja dalam tiga daerah pelumasan, yaitu pelumasan batas, pelumasan selaput fluida, dan pelumasan hidrodinamika. Dimana viskositas merupakan sifat yang langsung memberi pengaruh pada gesekan. Semua bentuk panas yang timbul pada bantalan hasil gesekan harus dihilangkan pada saat sistem itu telah mencapai suhu operasi yang stabil.

 

2. Mengendalikan Suhu

Dalam mengendalikan suhu, sistem temperatur pelumas secara langsung menyesuaikan dan bereaksi pada suhu komponen yang memanas akibat bekerja satu sama lain. Ketika terjadi hubungan antara logam dengan logam, banyak panas yang diserap, sehingga pelumas berperan sangat penting membantu proses penyerapan panas dengan cara mentransfer permukaan yang mempunyai suhu tinggi dan memindahkannya ke media lain yang suhunya lebih rendah. Tugas ini memerlukan sirkulasi pelumas dalam jumlah banyak dan konstan.

 

3. Mengendalikan Korosi

Tingkat perlindungan korosi yang diberikan tergantung pada lingkungan di tempat permukaan logam yang dilumasi itu bekerja. Jika mesin itu bekerja di dalam ruangan dengan kondisi kelembaban yang rendah dan tidak ada kontaminasi dari bahan yang korosif, kemungkinan tidak terjadi korosi. Adanya kontaminasi yang korosif pada operasi mesin, membuat upaya mengendalikan korosi menjadi lebih sulit. Sehubungan dengan itu, pelumas yang digunakan dalam mesin harus memberi kemampuan perlindungan korosi dalam tingkat yang sangat tinggi. Yang perlu dipertimbangkan dalam mengatasi korosi pada mesin yang bekerja pada lingkungan yang korosif di udara terbuka adalah pengaruh kontaminasi terhadap sifat pelumas itu sendiri. Kemampuan pelumas untuk mengendalikan korosi adalah langsung berhubungan dengan ketebalan selaput pelumas yang tetap ada pada permukaan logam dan komposisi kimia pelumas. Bahan yang biasanya digunakan untuk aditif penghindar korosi adalah surfaktan.

 

4. Mengendalikan Keausan

Keausan yang terjadi pada sistem pelumasan disebabkan oleh 3 (tiga) hal, yaitu abrasi, korosi, dan kontak antara logam dengan logam. Keausan abrasi biasanya disebabkan oleh partikel padat yang masuk ke lokasi pelumas itu berada. Bentuk keauasan abrasi adalah torehan (scoring) dan garukan (starching). Keausan yang diakibatkan karena korosi umumnya disebabkan oleh produk oksidasi pelumas. Pemrosesan yang lebih sempurna dengan menambahkan aditif penghindar oksidasi dapat mengurangi terjadinya kerusakan pelumas. Keausan juga disebabkan oleh terjadinya kontak antara logam dan logam yang merupakan hasil rusaknya selaput pelumas. Singkatnya, sesuatu yang menyebabkan permukaan logam yang dilumasi saling mendekat sehingga terjadi kontak antara satu permukaan dengan permukaan lainnya menyebabkan timbulnya keausan.

 

5. Mengisolasi Listrik

Pada beberapa penggunaan khusus, pelumas dituntut untuk bersifat sebagai isolator listrik. Untuk tetap mendapatkan nilai isolasi maksimal, pelumas harus dijaga tetap bersih dan bebas air. Pelumas harus tidak mengandung aditif yang menimbulkan proses elektrolisis jika terkena sejumlah air.

 

6. Meredam Kejutan

Fungsi dari pelumas sebagai fluida peredam kejutan dilakukan dengan 2 (dua) cara. Pertama, yang sangat dikenal adalah memindahkan tenaga mekanik ke tenaga fluida seperti dalam peredam kejut otomotif (shock absorbser). Dalam hal ini, vibrasi atau osilasi tubuh kendaraan menyebabkan piston yang berada di dalam silinder fluida yang tetutup bergerak naik turun. Fluida bergerak mengalir dari sisi piston ke sisi yang melewati suatu celah dengan menghilangkan tenaga mekanik melalui gesekan fluida. Untuk itu, biasanya digunakan pelumas dengan indeks viskositas yang tinggi. Mekanisme kedua yang berperan dalam meredam kejutan fungsi pelumas adalah perubahan viskositas terhadap tekanan.

 

7. Pembersih Kotoran

Pelumas disebut sebagai pembersih atau pembilas kotoran yang masuk di dalam sistem karena adanya partikel padat yang terperangkap diantara permukaan logam yang dilumasi. Hal ini benar-benar terjadi pada jenis mesin internal-combution, dimana aditif detergen-dispersan digunakan untuk melumatkan lumpur dan membawanya dari karter ke saringan yang dirancang untuk menepis partikel padat yang dapat menimbulkan keausan.

 

8. Memindahkan Tenaga

Salah satu peningkatan fungsi pelumas modern adalah media hidrolik. Peralatan otomatis pada kendaraan merupakan salah satu contoh meningkatnya kompleksitas persyaratan pelayanan pelumas. Pelumas ini menunjukan penggunaan terbesar fluida pemindah tenaga (power-transmission fluids), menjadi suatu kebutuhan yang utama untuk menggunakan pelumas yang baik, dan sifat-sifat hidrolik merupakan hal yang juga harus dipertimbangkan.

 

9. Membentuk Sekat

Minyak Pelumas sendiri bersifat sebagai sekat, yaitu pelumas yang tinggi viskositasnya akan berfungsi sebagai sekat dari celah yang lebih lebar. Oleh karena itu, dianjurkan untuk mesin yang sudah tua menggunakan pelumas mesin yang memiliki viskositas lebih tinggi dari normalnya. Hal ini disebabkan jarak bebas atau clearance mesin tua lebih lebar dari mesin yang baru.

 

Aplikasi Kinematika dan Dinamia pada

KOMPONEN-KOMPONEN MOTOR BAKAR

Dalam mendesain kekuatan komponen-komponen motor bakar, sangatlah penting untuk menghitung besar gaya-gaya dan momen yang bekerja pada setiap komponen. Motor bakar sebagai salah satu contoh mekanisme engkol peluncur, mempunyai komponen-komponen kritis seperti bantalan (Bearing) dan Pena (Pin).hal ini disebabkan trekonsentrasinya gaya-gaya pada elemen ini.

Dalam mekanisme yang beroperasi pada putaran tinggi, besar gaya-gaya yang timbul akibat adanya percepatan massa komponen akan lebih besar dibandingkan gaya-gaya statis yang bekerja pada komponen mesin itu sendiri.

  1. Diagram Benda Bebas

Diagram benda bebas diperoleh dengan cara memindah kan gaya-gaya yang bekerja pada komponen-kompnen pada motor bakar.

 

 

 


 

  1. Mekanisme Engkol Peluncur

Motor bakar satu silinder menggunakan mekanisme Engkol peluncur dalam pengoperasiannya seperti pada gambar 3. Untuk aplkasi mekanisme ini pada sebuah motor bakar, usaha hasil pembakaran bahan baker dan oksigen yang berekpansi akan mendorong torak atau piston yang dilanjutkan kebatang penghubung yang akan memutar poros engkol , yang akan kemudian di idealisasikan akan menghasilkan putaran konstan dengan bantuan seebuah roda gila (Fly Wheel)

 

 

 

Dengan menggunakan metode-metode yang ada pada ilmu Kenematika dan Dinamika maka kita dapat menngetahui seemua gaya yang bekerja pada sebuah mekanisme Motor Bakar .

ALAT UKUR TEKNIK

Posted: Januari 9, 2012 in MAKALAH

MIKROMETER SEKRUP

 

Mikrometer Sekrupadalah alat ukur yang dapat melihat dan mengukur benda dengan satuan ukur yang memiliki ketelitian 0.01 mm Satu mikrometer adalah secara luas digunakan alat di dalam teknik mesin electro untuk mengukur ketebalan secara tepat dari blok-blok, luar dan garis tengah dari kerendahan dan batang-batang slot. Mikrometer ini banyak dipakai dalam metrology, studi dari pengukuran, Mikrometer memiliki 3 jenis umum pengelompokan yang didasarkan pada aplikasi berikut :

  • Mikrometer Luar Mikrometer luar digunakan untuk ukuran memasang kawat, lapisan-lapisan, blok-blok dan batang-batang.
  • Mikrometer dalam Mikrometer dalam digunakan untuk mengukur garis tengah dari lubang suatu benda
  • Mikrometer kedalaman Mikrometer kedalaman digunakan untuk mengukur kerendahan dari langkah-langkah dan slot-slot.

Satu mikrometer ditetapkan dengan menggunakan satu mekanisme sekrup titik nada. Satu fitur yang menarik tambahan dari mikrometer-mikrometer adalah pemasukan satu tangkai menjadi bengkok yang terisi. Secara normal, orang bisa menggunakan keuntungan mekanis sekrup untuk menekan material, memberi satu pengukuran yang tidak akurat. Dengan cara memasang satu tangkai yang roda bergigi searah keinginan pada satu tenaga putaran tertentu.

PENGGARIS

 

Penggaris adalah sebuah alat pengukur dan alat bantu gambar untuk menggambar garis lurus. Terdapat berbagai macam penggaris, dari mulai yang lurus sampai yang berbentuk segitiga (biasanya segitiga siku-siku sama kaki dan segitiga siku-siku 30°–60°). Penggaris dapat terbuat dari plastik, logam, berbentuk pita dan sebagainya. Juga terdapat penggaris yang dapat dilipat.

BUSUR

 

Dalam geometri , busur derajat adalah alat melingkar atau setengah lingkaran untuk mengukur suatu sudut atau lingkaran . The units of measurement utilized are usually degrees . Unit pengukuran yang digunakan biasanya derajat . Some protractors are simple half-discs; these have existed since ancient times. Beberapa protractors sederhana setengah cakram; ini telah ada sejak zaman kuno. More advanced protractors, such as the bevel protractor , have one or two swinging arms, which can be used to help measure the angle. Protractors lebih maju, seperti busur derajat bevel, memiliki satu atau dua lengan ayun, yang dapat digunakan untuk membantu mengukur sudut.

JANGKA

 

Jangka adalah alat untuk menggambar lingkaran atau busur. Alat ini juga dapat digunakan untuk mengukur jarak, terutama pada peta. Jangka digunakan dalam matematika, gambar teknis, navigasi, dan lain-lain. Jangka biasanya terbuat dari besi, dan terdiri dari dua bagian/kaki yang dihubungkan oleh engsel dan bisa diatur pembukaannya. Salah satu kaki mempunyai jarum di ujungnya, dan pensil di kaki yang lain, atau bisa juga memakai pena. Lingkaran bisa dibuat dengan menancapkan kaki yang berjarum di atas kertas dan menyentuhkan pensil ke permukaan kertas, lalu memutar pensil dengan tumpuan kaki berjarum sambil menjaga sudut engsel untuk tidak berubah. Jari-jarilingkaran bisa diubah dengan mengubah sudut yang dibentuk oleh engsel. Jarak di peta bisa diukur dengan menggunakan jangka yang mempunyai jarum di kedua kakinya. Engselnya diatur sedemikian rupa sehingga jarak antara dua jarum di peta mewakili jarak tertentu di kenyataan. Dengan menghitung berapa kali jangka harus melompat di antara dua titik di peta, jarak antara dua titik tersebut bisa dihitung.

JANGKA SORONG

  Jangka sorong adalah alat ukur yang ketelitiannya dapat mencapai seperseratus milimeter. Terdiri dari dua bagian, bagian diam dan bagian bergerak. Pembacaan hasil pengukuran sangat bergantung pada keahlian dan ketelitian pengguna maupun alat. Sebagian keluaran terbaru sudah dilengkapi dengan display digital. Pada versi analog, umumnya tingkat ketelitian adalah 0.05mm untuk jangka sorang dibawah 30cm dan 0.01 untuk yang diatas 30cm. Kegunaan jangka sorong adalah: untuk mengukur suatu benda dari sisi luar dengan cara diapit; untuk mengukur sisi dalam suatu benda yang biasanya berupa lubang (pada pipa, maupun lainnya) dengan cara diulur; untuk mengukur kedalamanan celah/lubang pada suatu benda dengan cara “menancapkan/menusukkan” bagian pengukur. Bagian pengukur tidak terlihat pada gambar karena berada di sisi pemegang.  

NERACA PEGAS

Neraca pegas dilengkapi dengan dua jenis skla, yaitu skala satuan besaran massa [kilogram] dan skla satuan besaran gaya[newton]. hal ini berart, neraca pegas dapat dipakai untuk mengukur massa dan berat benda. cara menggunakan neraca pegas Benda yang akan diukur massanya, digantung pada pengait neraca. skala yang di tunjukan oleh penunjuk neraca, sama dangan nilai massa benda yang diukur. skala satuan besaran massa yang di tunjukan oleh penunjuk neraca adalah lima.berarti massa benda tersebut adalah lima kg.

TERMOMETER

  Termometer adalah alat yang digunakan untuk mengukur suhu (temperatur), ataupun perubahan suhu. Istilah termometer berasal dari bahasa Latin thermo yang berarti panas dan meter yang berarti untuk mengukur. Prinsip kerja termometer ada bermacam-macam, yang paling umum digunakan adalah termometer air raksa.

TERMOKOPEL

  Pada dunia elektronika, termokopel adalah sensor suhu yang banyak digunakan untuk mengubah perbedaan suhu dalam benda menjadi perubahan tegangan listrik(voltase). Termokopel yang sederhana dapat dipasang, dan memiliki jenis konektor standar yang sama, serta dapat mengukur temperatur dalam jangkauan suhu yang cukup besar dengan batas kesalahan pengukuran kurang dari 1 °C. Termokopel paling cocok digunakan untuk mengukur rentangan suhu yang luas, hingga 2300°C. Sebaliknya, kurang cocok untuk pengukuran dimana perbedaan suhu yang kecil harus diukur dengan akurasi tingkat tinggi, contohnya rentang suhu 0–100 °C dengan keakuratan 0.1 °C. Untuk aplikasi ini, Termistor dan RTD lebih cocok. Contoh Penggunaan Termokopel yang umum antara lain : Industri besi dan baja Pengaman pada alat-alat pemanas Untuk termopile sensor radiasi Pembangkit listrik tenaga panas radioisotop, salah satu aplikasi termopile.

MULTIMETER

  Multimeter adalah alat pengukur listrik yang sering dikenal sebagai VOM (Volt/Ohm meter) yang dapat mengukur tegangan (voltmeter), hambatan (ohm-meter), maupun arus (amper-meter). Ada dua kategori multimeter: multimeter digital atau DMM (digital multi-meter)(untuk yang baru dan lebih akurat hasil pengukurannya), dan multimeter analog. Masing-masing kategori dapat mengukur listrik AC, maupun listrik DC.      

ANEMOMETER

Anemometer adalah alat pengukur kecepatan angin yang banyak dipakai dalam bidang Meteorologi dan Geofisika atau stasiun prakiraan cuaca. Nama alat ini berasal dari kata Yunani anemos yang berarti angin. Perancang pertama dari alat ini adalah Leon Battista Alberti pada tahun 1450. Selain mengukur kecepatan angin, alat ini juga dapat mengukur besarnya tekanan angin itu.

Prinsip Kerja Mesin BUBUT dan Frais

Posted: Januari 4, 2012 in MAKALAH

MAKALAH

PRAKTIKUM PROSES MANUFAKTUR

 

 

Oleh:

Nama             : AHMADI RAFE’I

NPM                : 3331101530

Kelas              : B

Jurusan         : Teknik Mesin

 

 

 

 

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK

UNIVERSITAS SULTAN AGENG TIRTAYASA

LABORATORIUM PROSES MANUFAKTUR

2011

Prinsip Kerja Mesin Bubut

Mesin Bubut adalah suatu Mesin perkakas yang digunakan untuk memotong benda yang diputar. Bubut sendiri merupakan suatu proses pemakanan benda kerja yang sayatannya dilakukan dengan cara memutar benda kerja kemudian dikenakan pada pahat yang digerakkan secara translasi sejajar dengan sumbu putar dari benda kerja. Gerakan putar dari benda kerja disebut gerak potong relatif dan gerakkan translasi dari pahat disebut gerak umpan

Gb 1.1 Mesin Bubut

Dengan mengatur perbandingan kecepatan rotasi benda kerja dan kecepatan translasi pahat maka akan diperoleh berbagai macam ulir dengan ukuran kisar yang berbeda. Hal ini dapat dilakukan dengan jalan menukar roda gigi translasi yang menghubungkan poros spindel dengan poros ulir.

Roda gigi penukar disediakan secara khusus untuk memenuhi keperluan pembuatan ulir. Jumlah gigi pada masing-masing roda gigi penukar bervariasi besarnya mulai dari jumlah 15 sampai dengan jumlah gigi maksimum 127. Roda gigi penukar dengan jumlah 127 mempunyai kekhususan karena digunakan untuk konversi dari ulir metrik ke ulir inci.

 

 

 

Prinsip Kerja Mesin Bubut

Poros spindel akan memutar benda kerja melalui piringan pembawa sehingga memutar roda gigi pada poros spindel. Melalui roda gigi penghubung, putaran akan disampaikan ke roda gigi poros ulir. Oleh klem berulir, putaran poros ulir tersebut diubah menjadi gerak translasi pada eretan yang membawa pahat. Akibatnya pada benda kerja akan terjadi sayatan yang berbentuk ulir.

Pekerjaan-pekerjaan yang umumnya dikerjakan oleh mesin bubut antara lain:

1. Membubut luar

2. Membubut dalam

3. Membubut tirus

4. Membuat Permukaan

5. Memotong

6. Membuat ulir

7. Membuat lubang pada senter

 

 

Bagian-bagian mesin bubut

Bagian-bagian mesin Bubut

Mesin bubut terdiri dari meja (bed) dan kepala tetap (head stock). Di dalam kepala tetap terdapat roda-roda gigi transmisi penukar putaran yang akan memutar poros spindel. Poros spindel akan menmutar benda kerja melalui cekal (chuck). Eretan utama (appron) akan bergerak sepanjang meja sambil membawa eretan lintang (cross slide) dan eretan atas (upper cross slide) dan dudukan pahat. Sumber utama dari semua gerakkan tersebut berasal dari motor listrik untuk memutar pulley melalui sabuk (belt).

 

 

 

 

 

 

 

 

Bagian-bagian mesin Frais

Bagian – bagian mesin Frais

Mesin ini terdiri dari badan atau kolom yang menyangga ram. Pada bagian depan kolom dipasang batang bimbing (guide) slide ways sehingga lutut (knee) yang ditumpu oleh batang ulir bergerak naik-turun secara lurus. Diatas lutut dipasang pelana (sddle) yang bergerak kemuka dan kebelakang sepanjang guide. Diatas pelana dipasangkan meja yang dapat bergerak ke kiri dan ke kanan agar lutut dapat bergerak naik turun, pelana bergerak maju mundur dan meja bergerak ke kiri dan ke kanan. Tujuan dari gerakan-gerakan pada mesin Freis untuk memenuhi gerak umpan (feeding) tetapi juga untuk memudahkan dalam menentukan posisi pahat terhadap benda kerja sebelum proses pemotongan dilakukan.

 

 

 

 

 

 

PAHAT MESIN BUBUT

1. Pahat bentuk


Pahat bentuk digunakan untuk membentuk benda kerja sesuai
bentuk permukaan yang diharapkan, salah satu contohnya
adalah pahat yang ujungnya beradius.
Pahat bentuk yang lain adalah berbentuk pesegi, biasanya untuk
membuat alur pada benda silinder.

 

2. Pahat Ulir

Pahat ulir digunakan untuk membuat ulir, baik ulir tunggal
maupun ganda. Bentuk pahat ulir harus sesuai dengan bentuk
ulir yang diinginkan. Untuk itu diperlukan pengasahan pahat
sesuai dengan mal ulirnya. Pahat ulir tidak mermpunyai sudut
tatal, permukaannya rata dengan ujung beradius sesuai radius
kaki ulir yang besarnya tergantung besar kisar ulirnya. Di bawah
ini ilustrasi pahat ulir segi tiga dan ulir segi empat

 

 

PAHAT MESIN FRAIS

 

Cutter

Cutter pada mesin milling mempunyai bentuk silindris, berputar pada sumbunya dan dilengkapi dengan gigi melingkar yang seragam.

Keuntungan cutter dibanding dengan pahat bubut dan pahat ketam adalah setiap sisi potong dari pisau frais mengenai benda kerja hanya dalam waktu yang pendek pada proses pemotongan selama 1 putaran pisau frais dan pendinginannya pada waktu sisi potong mengenai benda kerja, maka hasilnya cutter frais akan lebih tahan lama.

Cutter biasanya terbuat dari HSS maupun Carbide Tripped. Gigi cutter ada yang lurus maupun ada yang mempunyai sudut, untuk yang bersudut (helix angle) dapat mengarah ke kanan dan ke kiri.

Ada beberapa jenis cutter seperti misalnya :

a. Plain Mill Cutter

Digunakan untuk pengefraisan horizontal dari permukaan datar.

b. Shell End Mill Cutter

Pemotongan dengan menggunakan sisi muka, digunakan untuk pengefraisan dua permukaan yang tegak lurus. Pada cutter ini panjangnya lebih besar dari diameternya dan hal yang harus diingat adalah tidak boleh memasang cutter ini terbalik.

c. Face Mill Cutter

Digunakan untuk pengefraisan ringan (pemakanan kecil). Pisau ini pendek dan mempunyai sisi potong pada bagian yang melingkar dan bagian sisi mukanya, seperti shell mill cutter. Dalam jenis ini ada yang disebut Carbide Tipped.

Face mill cutter, keistimewaan pisau ini adalah tentang kemudahan penggantian sisi potongnya.

d. End Mill Cutter

Pengerjaan pada mesin milling

a. Pengefraisan Sisi, adalah pengefraisan dimana pisau sejajar dengan permukaan benda kerja.

b. Pegefraisan Muka, adalah pengefraisan dimana sumbu pisau tegak lurus dengan permukaan benda kerja.

TIPE-TIPE TRANSDUCER DAN SENSOR

Posted: Desember 3, 2011 in MAKALAH

TIPE-TIPE

SENSOR DAN TRANSDUCER

 

 

 

Oleh:

                           Nama   : Ahmadi rafe’i

                          Nim     : 3331101530

                           Kelas   : B

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK

UNIVERSITAS SULTAN AGENG TIRTAYASA

LABORATORIUM PENGUKURAN

2011

TIPE-TIPE

SENSOR (TRANSDUCER)

 

Sensor adalah peralatan yang digunakan untuk merubah suatu besaran fisik menjadi besaran listrik sehingga dapat dianalisa dengan rangkaian listrik tertentu. Sensor biasa digunakan untuk mengukur magnitude sesuatu. Sensor merupakan jenis transducer yang digunakan untuk mengubah variasi mekanis, magnetis, panas, sinar dan kimia menjadi tegangan / arus listrik. Sensor dikategorikan melalui pengukur dan memegang peranan penting dalam pengendalian proses pabrikasi modern. Sensor memberikan ekivalen mata, pendengaran, hidung, lidah untuk menjadi otak mikroprosesor dari system otomatisasi industri.  gambar sensor:

UntitledGambar sensor cahaya (LDR)

Transducer adalah alat yang biasa pada elektonika, kelistrikan, mekanik elektronik, elektromagnetik, digunakan mengubah energi dari satu energi ke bentuk energi yang lain untuk berbagai pengukuran atau transfer informasi contohnya seperti gambar berikut:

UntitledGambar transducer temperature (LM35)

Perbedaan antara sensor dengan transducer berikut gambar dapat menjelaskan perbedaannya:

 

Untitled

  • Gambar diatas adalah gambar Sensor cahaya / yang biasa disebut dengan LDR, gambar diataas menujukkan bahwa sensor masih membutuhkan komponen lain untuk menghasilkan tegangan.

Untitled

  • LM35 merupakan sebuah transducer temperatur, pada gambar diatas menjelaskan bahwa transducer tidak membutuhkan komponen lain untuk menghasilkan tegangan jadi dapat disimpulkan bahwa sensor masih membutuhkan komponen lain untuk mengeluarkan sinyal tegangan tetapi transducer tidak membutuhkan komponen yang laen untuk mengeluarkan sinyal tersebut.

1. Klasifikasi Sensor

            Secara umum berdasarkan fungsi dan penggunaannya sensor dapat dikelompokan menjadi 3 bagian yaitu:

a.   sensor thermal (panas)

b.   sensor mekanis

c.   sensor optik (cahaya)

Sensor thermal adalah sensor yang digunakan untuk mendeteksi gejala perubahan panas/temperature/suhu pada suatu dimensi benda atau dimensi ruang tertentu.

Contohnya; bimetal, termistor, termokopel, RTD, photo transistor, photo dioda, photo multiplier, photovoltaik, infrared pyrometer, hygrometer, dsb.

Sensor mekanis adalah sensor yang mendeteksi perubahan gerak mekanis, seperti perpindahan atau pergeseran atau posisi, gerak lurus dan melingkar, tekanan, aliran, level dsb.

Contoh;  strain gage, linear variable deferential transformer (LVDT), proximity, potensiometer, load cell, bourdon tube, dsb.

Sensor optic atau cahaya adalah sensor yang mendeteksi perubahan cahaya dari sumber cahaya, pantulan cahaya ataupun bias cahaya yang mengernai benda atau ruangan.

Contoh;  photo cell, photo transistor, photo diode, photo voltaic, photo multiplier, pyrometer optic, dsb.

Berikut adalah beberapa jenis sensor yang dapat dijumpai di lapangan

1.1.  Sensor proximity

Sensor  proximity  merupakan  sensor  atau  saklar  yang dapat  mendeteksi  adanya   target jenis   logam  dengan   tanpa   adanya   kontak   fisik.  Biasanya   sensor   ini   tediri   dari   alat elektronis   solid-state  yang   terbungkus   rapat  untuk melindungi  dari  pengaruh getaran, cairan, kimiawi, dan korosif yang berlebihan. Sensor proximity dapat diaplikasikan pada kondisi   penginderaan   pada   objek   yang   dianggap   terlalu   kecil   atau   lunak   untuk menggerakkan suatu mekanis saklar.

1.2 Sensor Magnet

Sensor Magnet atau disebut juga relai buluh, adalah alat yang akan terpengaruh medan magnet dan akan memberikan perubahan kondisi pada keluaran. Seperti layaknya saklar dua kondisi (on/off) yang digerakkan oleh adanya medan magnet di sekitarnya. Biasanya sensor ini dikemas dalam bentuk kemasan yang hampa dan bebas dari debu, kelembapan, asap ataupun uap.

1.3. Sensor Sinar

Sensor  sinar   terdiri  dari  3 kategori.  Fotovoltaic  atau sel  solar  adalah alat  sensor  sinar yang mengubah energi sinar langsung menjadi energi listrik, dengan adanya penyinaran cahaya akan menyebabkan pergerakan elektron dan menghasilkan  tegangan.  Demikian pula   dengan   Fotokonduktif   (fotoresistif)   yang   akan  memberikan   perubahan   tahanan (resistansi)  pada  sel-selnya,   semakin  tinggi   intensitas  cahaya  yang  terima,  maka akan semakin kecil pula nilai tahanannya. Sedangkan Fotolistrik adalah sensor yang berprinsip kerja berdasarkan pantulan karena perubahan posisi/jarak suatu sumber sinar (inframerah atau  laser)  ataupun  target  pemantulnya,  yang  terdiri  dari  pasangan sumber  cahaya dan penerima.

1.4. Sensor Ultrasonik

Sensor ultrasonik bekerja berdasarkan prinsip pantulan gelombang suara, dimana sensor ini  menghasilkan   gelombang   suara   yang   kemudian  menangkapnya   kembali   dengan perbedaan waktu  sebagai  dasar  penginderaannya.  Perbedaan waktu  antara  gelombang suara   dipancarkan   dengan   ditangkapnya   kembali   gelombang   suara   tersebut   adalah berbanding lurus dengan jarak atau tinggi objek yang memantulkannya. Jenis objek yang dapat diindera diantaranya adalah: objek padat, cair, butiran maupun tekstil.

1.5. Sensor Tekanan

Sensor   tekanan   –   sensor   ini  memiliki   transduser   yang  mengukur   ketegangan   kawat, dimana mengubah tegangan mekanis menjadi sinyal listrik. Dasar penginderaannya pada perubahan  tahanan pengantar  (transduser) yang berubah akibat  perubahan panjang dan luas penampangnya. Strain gage adalah sebuah contoh transduser pasif yang mengubah pergeseran mekanis menjadi   perubahan   tahanan.  Sensitivitas   sebuah   strain   gage   dijelaskan   dengan   suatu karakteristik   yang   disebut   factor   gage   (factor   gage),  K,   yang   didefinisikan   sebagai perubahan satuan tahanan dibagi dengan perubahan satuan panjang.

Untitled

 

Perubahan tahanan R pada sebuah konduktor yang penjangnya l dapat dihitung dengan menggunakan persamaan bagi tahanan dari sebuah konduktor yang penampangnya serba sama, yaitu:

Untitled

1.6. Sensor Kecepatan (RPM)

Proses  penginderaan  sensor  kecepatan  merupakan proses  kebalikan dari   suatu motor,dimana suatu poros/object yang berputar pada suatui generator akan menghasilkan suatutegangan yang sebanding dengan kecepatan putaran object. Kecepatan putar sering puladiukur  dengan  menggunakan   sensor   yang  mengindera  pulsa  magnetis   (induksi)   yangtimbul saat medan magnetis terjadi.

1.7. Sensor Penyandi (Encoder)

Sensor   Penyandi   (Encoder)   digunakan   untuk  mengubah   gerakan  linear  atau   putaran menjadi  sinyal  digital,  dimana sensor putaran memonitor gerakan putar dari  suatu alat. Sensor  ini  biasanya  terdiri  dari  2  lapis  jenis penyandi,  yaitu;  Pertama,  Penyandi  rotari tambahan   (yang   mentransmisikan   jumlah   tertentu   dari   pulsa   untuk   masing-masing putaran) yang akan membangkitkan gelombang kotak pada objek yang diputar. Kedua, Penyandi   absolut   (yang  memperlengkapi   kode  binary  tertentu   untuk  masing-masing posisi sudut) mempunyai  cara kerja sang sama dengan perkecualian,  lebih banyak atau lebih   rapat   pulsa   gelombang   kotak   yang   dihasilkan   sehingga   membentuk   suatu pengkodean   dalam   susunan   tertentu.

2. Klasifikasi Transduser  (William D.C, 1993)

  1. Self generating transduser (transduser pembangkit sendiri)

Self generating transduser adalah transduser yang hanya memerlukan satu sumber energi.

Contoh: piezo electric, termocouple, photovoltatic, termistor, dsb.

Ciri transduser ini adalah dihasilkannya suatu energi listrik dari transduser secara langsung. Dalam hal ini transduser berperan sebagai sumber tegangan.

  1. External power transduser (transduser daya dari luar)

External power transduser adalah transduser yang memerlukan sejumlah  energi dari luar untuk menghasilkan suatu keluaran.

Contoh: RTD (resistance thermal detector), Starin gauge, LVDT (linier variable differential transformer), Potensiometer, NTC, dsb.

Tabel berikut menyajikan prinsip kerja serta pemakaian transduser berdasarkan sifat kelistrikannya.

Tabel 1. Kelompok Transduser

Parameter listrik dan kelas transduser Prinsip kerja dan sifat alat Pemakaian alat
Transduser Pasif
Potensiometer Perubahan nilai tahanan karena posisi kontak bergeser Tekanan, pergeseran/posisi
Strain gage Perubahan nilai tahanan akibat perubahan panjang kawat oleh tekanan dari luar Gaya, torsi, posisi
Transformator selisih (LVDT) Tegangan selisih dua kumparan primer akibat pergeseran inti trafo Tekanan, gaya, pergeseran
Gage arus pusar Perubahan induktansi kumparan akibat perubahan jarak plat Pergeseran, ketebalan
Transduser Aktif
Sel fotoemisif Emisi elektron akibat radiasi yang masuk pada permukaan fotemisif Cahaya dan radiasi
Photomultiplier Emisi elektron sekunder akibat radiasi yang masuk ke katoda sensitif cahaya Cahaya, radiasi dan relay sensitif cahaya
Termokopel Pembangkitan ggl pada titik sambung dua logam yang berbeda akibat dipanasi Temperatur, aliran panas, radiasi
Generator kumparan putar (tachogenerator) Perputaran sebuah kumparan di dalam medan magnit yang membangkitkan tegangan Kecepatan, getaran
Piezoelektrik Pembangkitan ggl bahan kristal piezo akibat gaya dari luar Suara, getaran, percepatan, tekanan
Sel foto tegangan Terbangkitnya tegangan pada sel foto akibat rangsangan energi dari luar Cahaya matahari
Termometer tahanan (RTD) Perubahan nilai tahanan kawat akibat perubahan temperatur Temperatur, panas
Hygrometer tahanan Tahanan sebuah strip konduktif berubah terhadap kandungan uap air Kelembaban relatif
Termistor (NTC) Penurunan nilai tahanan logam akibat kenaikan temperatur Temperatur
Mikropon kapasitor Tekanan suara mengubah nilai kapasitansi dua buah plat Suara, musik,derau
Pengukuran reluktansi Reluktansi rangkaian magnetik diubah dengan mengubah posisi inti besi sebuah kumparan Tekanan, pergeseran, getaran, posisi

 

 

TERMOKOPEL

Posted: Desember 3, 2011 in MAKALAH

MAKALAH PRAKTIKUM PENGUKURAN TEKNIK

“TERMOKOPEL”

 

Oleh:

Nama               : Ahmadi rafe’i

Nim                 : 3331101530

Fakultas           : Teknik Mesin

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK

UNIVERSITAS SULTAN AGENG TIRTAYASA

LABORATORIUM PENGUKURAN

2011

BAB I

Termokopel

UntitledBerasal dari kata “Thermo” yang berarti energi panas dan “Couple”yang berarti pertemuan dari dua buah benda. Termokopel adalah transduser aktif suhu yang tersusun dari dua buah logam berbeda dengan titik pembacaan pada pertemuan kedua logam dan titik yang lain sebagai outputnya.

Termokopel adalah sensor suhu yang banyak digunakan untuk mengubah perbedaan suhu dalam benda menjadi perubahan tegangan listrik (voltase). Termokopel yang sederhana dapat dipasang, dan memiliki jenis konektor standar yang sama, serta dapat mengukur temperatur dalam jangkauan suhu yang cukup antara -200oC sampai 1800oC dengan batas kesalahan pengukuran kurang dari 1 °C.

Prinsip kerja termokopel secara sederhana berupa dua buah kabel dari jenis logam yang berbeda ujungnya, hanya ujungnya saja, disatukan (dilas). Titik penyatuan ini disebut hot junction. Prinsip kerjanya memanfaatkan karakteristik hubungan antara tegangan (volt) dengan temperatur. Setiap jenis logam, pada temperatur tertentu memiliki tegangan tertentu pula. Pada temperatur yang sama, logam A memiliki tegangan yang berbeda dengan logam B, terjadilah perbedaan tegangan (kecil sekali, miliVolt) yang dapat dideteksi.

Jika sebuah batang logam dipanaskan pada salah satu ujungnya maka pada ujung tersebut elektron-elektron dalam logam akan bergerak semakin aktif dan akan menempati ruang yang semakin luas, elektron-elektron saling desak dan bergerak ke arah ujung batang yang tidak dipanaskan. Dengan demikian pada ujung batang yang dipanaskan akan terjadi muatan positif.

Kerapatan electron untuk setiap bahan logam berbeda tergantung dari jenis logam. Jika dua batang logam disatukan salah satu ujungnya, dan kemudian dipanaskan, maka elektron dari batang logam yang memiliki kepadatan tinggi akan bergerak ke batang yang kepadatan elektronnya rendah, dengan demikian terjadilah perbedaan tegangan diantara ujung kedua batang logam yang tidak disatukan atau dipanaskan. Besarnya termolistrik atau gem ( gaya electromagnet ) mengalir dari titik hot-juction ke cold-junction atau sebaliknya. Setelah terdeteksi perbedaan tegangan (volt). Beda tegangan ini linear dengan perubahan arus, sehingga nilai arus ini bisa dikonversi kedalam bentuk tampilan display. Sebelum dikonversi, nilai arus di komparasi dengan nilai acuan dan nilai offset di bagian komparator, fungsinya untuk menerjemahkan setiap satuan amper ke dalam satuan volt kemudian dijadikan besaran temperatur yang ditampilkan melalui layar/monitor berupa seven segmen yang menunjukkan temperatur yang dideteksi oleh termokopel.

Untitled

Sebuah termokopel terdiri dari dua buah kawat yang kedua ujungnya disambung sehingga menghasilkan suatu open-circuit voltage sebagai fungsi dari suhu, diketahui sebagai tegangan termolistrik atau disebut dengan seebeck voltage, yang ditemukan oleh Thomas Seebeck pada 1921.           Hubungan antara tegangan dan pengaruhnya terhadap suhu masing-masing titik pertemuan dua buah kawat adalah linear. Walaupun begitu, untuk perubahan suhu yang sangat kecil, tegangan pun akan terpengaruh secara linear, atau dirumuskan sebagai   berikut : (National Instrument , Application Note 043)

Untitled

dengan ΔV adalah perubahan tegangan, S adalah koefisien seebeck, dan ΔT adalah perubahan suhu. Nilai S akan berubah dengan perubahan suhu, yang berdampak pada nilai keluaran berupa tegangan termokopel tersebut, dan nilai S akan bersifat non-linear di atas rentang tegangan dari termokopel tersebut.

Termokopel diberi tanda dengan hurup besar yang mengindikasikan komposisinya berdasar pada aturan American National Standard Institute (ANSI), seperti dibawah ini :

Tabel Sifat dari beberapa tipe termokopel pada 250C

Tipe Material( + dan -) Temp.Kerja(0C) Sensitivitas(µV/0C)
E Ni-Cr dan Cu-Ni -270 ~ 1000 60.9
J Fe dan Cu-Ni -210 ~ 1200 51.7
K Ni-Cr dan Ni-Al -270 ~ 1350 40.6
T Cu dan Cu-Ni -270 ~ 400 40.6
R Pt dan Pt(87%)-Rh(13%) -50 ~ 1750 6
S Pt dan Pt(90%)-Rh(10%) -50 ~ 1750 6
B Pt(70%)-h(30%)dan Pt(94%)-Rh(6%) -50 ~ 1750 6

 

Tipe-Tipe Termokopel

Tersedia beberapa jenis termokopel, tergantung aplikasi penggunaannya

  1. Tipe K (Chromel (Ni-Cr alloy) / Alumel (Ni-Al alloy))

Termokopel untuk tujuan umum. Lebih murah. Tersedia untuk rentang suhu −200 °C hingga +1200 °C.

  1. Tipe E (Chromel / Constantan (Cu-Ni alloy))

Tipe E memiliki output yang besar (68 µV/°C) membuatnya cocok digunakan pada temperatur rendah. Properti lainnya tipe E adalah tipe non magnetik.

  1. Tipe J (Iron / Constantan)

Rentangnya terbatas (−40 hingga +750 °C) membuatnya kurang populer dibanding tipe K

Tipe J memiliki sensitivitas sekitar ~52 µV/°C

  1. Tipe N (Nicrosil (Ni-Cr-Si alloy) / Nisil (Ni-Si alloy))

Stabil dan tahanan yang tinggi terhadap oksidasi membuat tipe N cocok untuk pengukuran suhu yang tinggi tanpa platinum. Dapat mengukur suhu di atas 1200 °C. Sensitifitasnya sekitar 39 µV/°C pada 900 °C, sedikit di bawah tipe K. Tipe N merupakan perbaikan tipe K

Termokopel tipe B, R, dan S adalah termokopel logam mulia yang memiliki karakteristik yang hampir sama. Mereka adalah termokopel yang paling stabil, tetapi karena sensitifitasnya rendah (sekitar 10 µV/°C) mereka biasanya hanya digunakan untuk mengukur temperatur tinggi (>300 °C).

  1. Type B (Platinum-Rhodium/Pt-Rh)

Cocok mengukur suhu di atas 1800 °C. Tipe B memberi output yang sama pada suhu 0 °C hingga 42 °C sehingga tidak dapat dipakai di bawah suhu 50 °C.

  1. Type R (Platinum /Platinum with 7% Rhodium)

Cocok mengukur suhu di atas 1600 °C. sensitivitas rendah (10 µV/°C) dan biaya tinggi membuat mereka tidak cocok dipakai untuk tujuan umum.

  1. Type S (Platinum /Platinum with 10% Rhodium)

Cocok mengukur suhu di atas 1600 °C. sensitivitas rendah (10 µV/°C) dan biaya tinggi membuat mereka tidak cocok dipakai untuk tujuan umum. Karena stabilitasnya yang tinggi Tipe S digunakan untuk standar pengukuran titik leleh emas (1064.43 °C).

  1. Type T (Copper / Constantan)

Cocok untuk pengukuran antara −200 to 350 °C. Konduktor positif terbuat dari tembaga, dan yang negatif terbuat dari constantan. Sering dipakai sebagai alat pengukur alternatif sejak penelitian kawat tembaga. Type T memiliki sensitifitas ~43 µV/°C


BAB II

Ketelitian Satuan

Thermocouple adalah dua logam yang didekatkan yang apabila terpapar oleh kalor dengan suhu tertentu akan menghasilkan beda potensial. Termokopel Suhu didefinisikan sebagai jumlah dari energi panas dari sebuah objek atau sistem. Perubahan suhu dapat memberikan pengaruh yang cukup signifikan terhadap proses ataupun material pada tingkatan molekul (Wilson, 2005). Sensor suhu adalah device yang dapat melakukan deteksi pada perubahan suhu berdasarkan pada parameter-parameter fisik seperti hambatan, ataupun perubahan voltage (Wilson, 2005). Salah satu jenis sensor suhu yang banyak digunakan sebagai sensor suhu pada suhu tinggi adalah termokopel seperti pada Gambar dibawah ini

Untitled

Gambar  Thermocouple (Wilson, 2005)

Termokopel merupakan jenis logam yang berbeda disatukan salah satu ujungnya dan ujung tersebut dipanaskan maka akan timbul beda potensial pada ujung-ujung yang lain, hal ini diakibatkan oleh kecepatan gerak elektron dari dua material yang berbeda daya hantar panas sehingga mengakibatkan beda potensial. Dalam perancangan serta penggolongan dari termokopel sendiri sudah diatur oleh Instrument Society of America (ISA).
Termokopel dibangun berdasarkan Asas Seeback dimana bila dua jenis logam yang berlainan disambungkan ini akan menjadi rangkaian tertutup sehingga perbedaan temperature pada sambungan akan menimbulkan beda potensial listrik pada kedua logam tersebut, selanjutnya akan dibaca oleh alat ukur temperatur (Fraden, 2003).

Termokopel dapat dihubungkan secara seri satu sama lain untuk membuat termopile, dimana tiap sambungan yang panas diarahkan ke suhu yang lebih tinggi dan semua sambungan dingin ke suhu yang lebih rendah. Dengan begitu, tegangan pada setiap termokopel menjadi naik, yang memungkinkan untuk digunakan pada tegangan yang lebih tinggi. Dengan adanya suhu tetapan pada sambungan dingin, yang berguna untuk pengukuran di laboratorium, secara sederhana termokopel tidak mudah dipakai untuk kebanyakan indikasi sambungan langsung dan instrumen kontrol. Mereka menambahkan sambungan dingin tiruan ke sirkuit mereka yaitu peralatan lain yang sensitif terhadap suhu (seperti termistor atau dioda) untuk mengukur suhu sambungan input pada peralatan, dengan tujuan untuk mengurangi gradiasi suhu di antara ujung-ujungnya. Di sini, tegangan yang berasal dari hubungan dingin yang diketahui dapat disimulasikan, dan koreksi yang baik dapat diaplikasikan. Hal ini dikenal dengan kompensasi hubungan dingin.

 


BAB III

Cara Menggunakan

Untitled

Termokopel merupakan salah satu aplikasi dari prinsip termodinamika, dimana termokopel ini sering digunakan pada: Industri besi dan baja, Pengaman pada alat-alat pemanas, Untuk termopile sensor radiasi, Pembangkit listrik tenaga panas radioisotop, salah satu aplikasi termopile.

Prinsip kerja dari termokopel adalah, adanya perbedaan panas secara gradien  akan menghasilkan tegangan listrik, hal ini disebut sebagai efek termoelektrik. Untuk mengukur perubahan panas ini gabungan dua macam konduktor sekaligus sering dipakai pada ujung benda panas yang diukur. Konduktor tambahan ini kemudian akan mengalami gradiasi suhu, dan mengalami perubahan tegangan secara berkebalikan dengan perbedaan temperatur benda. Menggunakan logam yang berbeda untuk melengkapi sirkuit akan menghasilkan tegangan yang berbeda, meninggalkan perbedaan kecil tegangan memungkinkan kita melakukan pengukuran, yang bertambah sesuai temperatur. Perbedaan ini umumnya berkisar antara 1 hingga 70 microvolt tiap derajad celcius untuk kisaran yang dihasilkan kombinasi logam modern. Beberapa kombinasi menjadi populer sebagai standar industri, dilihat dari biaya, ketersediaanya, kemudahan, titik lebur, kemampuan kimia, stabilitas, dan hasil. Sangat penting diingat bahwa termokopel mengukur perbedaan temperatur di antara 2 titik, bukan temperatur absolut.